
Intelligently Managing KV-Cache with Reinforcement
Learning

Group 36: Jingwen Gu (jg2369)

1 Introduction

1.1 Background

KV-caches are an important component of transformer models. During inference, each new token
is generated by computing the attention between the current query Qi and the keys Kj and values
Vj of all previous tokens j = 0, 1, · · · , i − 1. To avoid redundant computation, KV-caches store
the computed Kj and Vj for decoding future tokens. While accelerating the decoding process,
KV-caches become a major bottleneck for long-context language modeling, since they impose a linear
spatial complexity on the sequence length, and as a result most transformer LLMs have a hard-coded
maximum context length beyond which the model behavior could deteriorate.

Consequently, compressing and merging the KV-cache has been a hot topic for language modeling
research. The benefits from KV-cache compression is two-fold:

• If the cache size remains the same, the language model is allowed to generate far more
tokens than previously allowed without significantly sacrificing performance;

• If the token length remains the same but the cahce size is reduced, the language model can
operate with far smaller memory footprints while retaining the same performance.

There has also been numerous attempts to address this bottleneck by compressing the KV-cache,
including FastGen[1], KVMerger[2], and KVQuant[3]. However, these methods are all fairly specific
to select use cases, and our intuition is that by training a policy using Reinforcement Learning, we
could better encapsulate the KV management problem and devise a more generic solution.

2 Problem

2.1 Problem Formulation

The project aims to develop an alternative solution to this bottleneck by finding a way to intelligently
manage the KV-cache with reinforcement learning. The main observation is that a large number
of tokens are either less informative (such as certain propositions, modal verbs, the word "the") or
become less and less relevant for future tokens. If the KV matrices for these tokens are released
from the KV-Cache, effectively "forgetting" these tokens, the impact on inference is less pronounced.
However, one should be strategic about which tokens to "forget" and when to do so, and the decision
to "forget" affects both the context and available tokens to release in future steps. Thus, this KV-cache
management problem can be framed as a Markov Decision Problem M = (S,A, P, r,H, ρ) where:

• State S represents the sequence of tokens t<i := t0, t1 · · · , ti−1 generated so far and
remaining tokens J ⊆ {0, 1, · · · , i− 1} in the KV-cache;

• Action A represents the token to release from the KV-cache, which is some integer j ∈ J ;

• Transition P maps the current (s, a) to the next state s′. Concretely, its complexity lies in the
next generated token ti as a function of the already-generated sequence and the remaining

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

cache, i.e. the entire transformer model itself. Since this is a highly complex function with
large state-action space, one might need to approximate it with simpler function classes,
thus rendering this MDP a Reinforcement Learning problem;

• Reward r pertains to the quality of the generated token, which can be measured by metrics
such as perplexity and other task-specific criteria;

• The horizon H represent the maximum length of the generated text;

• The initial distribution ρ allows us to sample the specific input given to the language model,
such as a paragraph to summarize, a question to answer, etc.

We solve this MDP using Proximal Policy Optimization (PPO), which is a widely-used heuristic for
Natural Policy Gradient (NPG), a variant of Policy Gradient that is constrained by KL-divergence
from an initial policy π0.

2.2 Hypothesis

The KV-cache can be intelligently managed by using PPO to optimize a policy π̂ that selects tokens
to "forget" conditioned on the generated sequence t<i and the currently cached tokens J . Concretely,
rolling out π̂ should yield superior performance to baseline methods such as FastGen and KVMerger
on select use cases.

2.3 Related class concepts

MDP, Reinforcement Learning, Policy Gradient, Function Approximation

3 Approach

In this section, we discuss the implementation details of the environment for KV-Cache management
and the application of the PPO algorithm to different variants of the environmnet. In particular,
solving the KV-cache MDP M using PPO requires a nuanced treatment of the state space S and
the reward r. As mentioned in previous sections, the KV-cache can be excessively large, which can
make optimization intractable if both the KV-cache and generated tokens are parameterized as state
variables. On the other hand, the reward function r can vary from task to task, but training a different
policy model for each specific task may be computationally expensive and undesirable for generic
language models. Hence in this section, we develop different variants of the state representation
and different methods to compute reward to ensure the feasibility of PPO in solving the KV-cache
management problem.

3.1 State Representation

To reduce the size of the state space S , we explore two variants of the original MDP where the state
space is restricted to only the remaining KV-cache or only to the generated token IDs, effectively
resulting in two new MDPs MKV and MID. Conceptually, both representations should convey
abundant information useful for choosing the token to release from the KV-cache:

• MKV : During inference, the transformer model takes in the K,V matrices as the context
representation. Therefore the actual values of the K,V matrices are analogous to word
embeddings are the most direct way to inform the model on what was generated so far. It can
be imagined that similar words would have similar K,V representations, and by analyzing
these matrices the policy model might thus learn to discern less informative words such as
prepositions, or that are less relevant to the current context.

• MID: Even if we do not pass in the actual K,V matrices, there is a bijective mapping
between tokens and their IDs. In particular, certain words like "the", "is", and "a" that are
especially uninformative in the long run may be easily identified by the model using IDs,
so the model may learn to put stronger weights that lean towards choosing these words.
However, since IDs are randomized, what the model learned about one particular ID cannot
generalize towards other IDs, which may make it harder for the model to learn more nuanced
tricks to KV management.

2

We compare the dimension of each state tensor from the two MDPs:

MDP State tensor dimension Dimension for Dimension for
GPT2 LLaMA 3.1-8B-Instruct

MKV [n_layers, 2, B,H, n_heads, D] [12,2,B,1024,12,64] [32,2,B,2048,32,128]
MID [B,H] [B,1024] [B,2048]

Here B is the batch size, H is the maximum length, D is the dimension of the KV matrices, n_layers
is the number of layers of the transformer model, and n_heads denotes the number of attention heads.
Note that even though the H dimension would be replaced by the current length the the generated
text during inference, we have to pad it to H such that the state space dimension remains the same
for all steps. As shown in the table, MKV requires a much larger state space than MID, and for the
LLaMA 3.1-8B-Instruct model the MKV state space is already rather intractable.

Hence there is a trade-off between expressiveness and tractability when choosing between the two
MDPs. For smaller models such as GPT2, we will experiment with both MDPs; whereas for larger
models such as LLaMA 3.1-8B-Instruct, we will primarily focus on MID.

3.2 The PPO Algorithm

In this paper, we do not modify the implementation of the PPO Algorithm, so in essence PPO
is used as a black-box oracle for policy optimization. Consequently, one can easily replace PPO
with their favorite policy optimization algorithm. For our experiments, we use the PPO class from
Stable-Baselines3, and hyperparameters will be given in the Results section. With the optimization
algorithm ascertained, our main work lies in implementing the environments for each variant of
KVM, which we discuss in the following subsections.

3.3 PPO Training with Sparse Reward

In specific language modelling tasks such as summarization, sentiment analysis, and chatbot response
generation, an overall loss function for the entire generated text is available to gauge the performance
of the language model. It is then natural to use a sparse reward function that assigns the overall loss
to the last step of each trajectory, and 0 everywhere else.

We thus define the environment KVM-Sparse, which is an abstract interface that could be implemented
with different sparse reward functions for different specific tasks. It has the following behaviors:

1. When resetting the environment, it randomly samples a sequence of tokens t0 from a
tokenized dataloader, and uses the language model to autoregressively generate until it
reaches the sequence length C, where C is the cache size. This is because we are only
interested in the behavior of the language model when the number of tokens exceeds the
KV-cache size.

2. The environment maintains the "actual" token IDs t≤h which can be arbitrarily long, and
the "managed" token IDs t̂≤h and KV which have the length of C.

3. As mentioned in section 2.1, the action a corresponds to the index of the KV-cache to release.
When stepping the environment, the corresponding a-th element in both t̂≤h and KV are
removed. We guarantee that a is not chosen to be the most recently generated token to avoid
the language model falling into a loop.

4. The language model then generates using the most recently generated token t[−1] and KV .
Note that the last token is provided because by construction of the transformer architecture,
the current KV includes all generated context up to the most recently generated token.

5. The next token th is greedily chosen by the log probability output from the language model,
and is concatenated to both the actual tokens t and the managed tokens t̂.

Below we present the pseudo-code of the reset and step functions of KVM-Sparse:

3

Algorithm 1: KVM-Sparse Environment

Class variables:
f(t,KV): The language model as a function of the input IDs and KV-cache
t≤h: The sequence of token IDs that the language model has generated
t̂≤h: The sequence of generated token IDs that remain in the KV-cache
KV : The remaining KV-cache
h: The current step
C: The KV-cache size

function reset():
t0 ∼ ρ
t≤C ,KV ← f(t0, ∅)
t̂≤C ← t≤C

h← C

function step(s,a):
KV ← KV [: a] ∪KV [a+ 1 :]
t̂≤h−1 ← t̂≤h−1[: a] ∪ t̂≤h−1[a+ 1 :]
∆,KV ← f(t[−1],KV) # ∆ is the output logits from the language model
th ← argmaxv∈V ∆(v) # Greedily decode the next token
t≤h ← t≤h−1 ∪ th
t̂≤h ← t̂≤h−1 ∪ th
h← h+ 1
E ← 1(h = H ∨ t = eos_token) # decide whether terminates
return (s(t̂≤h,KV), rh(s, a), E)

Note that in the last line, s(t̂≤h, kv) is a function that converts the remaining token IDs and KV-cache
into the state vector, which is different between MKV and MID; rh(s, a) is the sparse reward function
specific to the task being trained for.

In this paper, we mainly focus on summarization as an example of using sparse rewards for KVM. For
text summarization tasks, a widely-used metric is ROUGE, which compares the similarity between
two summaries written for the same original text, one being the model generation and another being
the ground truth. There are 4 main variants of ROUGE: ROUGE-1, which checks for unigram
overlap; ROUGE-2, which checks for bigram overlap; ROUGE-L, which checks for longest common
subsequences, and ROUGE-LSum, which is a variant of ROUGE-L for longer summaries. Here we
select ROUGE-L as the primary metric for summarization because it is the most appropriate for our
expected length and quality of the generated summaries.

The sparse reward function can then be written as follows:

rτh(s, a) =

{
0 h < |τ | − 1

ROUGE(s) h = |τ | − 1
(1)

Note that here we are comparing the current timestep h with |τ | and not H , where |τ | ≤ H is
the length of the current trajectory. This is because even though we could pad all trajectories to
the same length H , running the language model to generate the extra padded tokens at the end
is an unnecessary computational overhead, so we could simply terminate the trajectory when the
eos_token is generated.

3.4 PPO Training with Teacher Forcing

Despite its simplicity, KVM-Sparse suffers from the drawback of having a different reward for each
particular task. It would then require training a different policy model for each task and, if the actual
application consists of a combination of tasks such as translation-summary, switching between policy
models during inference. This defeats the purpose of generic language models.

Hence we turn to the language modeling literature, where it has been proven that supervised finetuning
provides large language models with reasonable generalization abilities, and numerous papers have
studied zero-shot or few-shot usages of language models. This is because by minimizing the cross

4

entropy loss between the generated and ground truth tokens, the language model learns to imitate the
human speakers so well that they develop sufficient overall language skills to excel in more specific
tasks.

Similarly, we explore the idea of using PPO to train a policy model that manages the KV-cache for all
tasks in general. However, using the token-level cross entropy loss is problematic for autoregressive
training, since once the language model generates a different token than the ground truth, all future
tokens will be affected, and hence it becomes hard to quantify the difference between the generated
text and the ground truth trajectory. On the other hand, the trajectory space of language modelling is
so large that one cannot hope to have a large enough dataset to cover all possible previously-generated
tokens t≤h as states, rendering imitation learning algorithms like Behavior Cloning unfeasible.

We thus borrow the technique of Teacher Forcing from the language modeling community. When
training with teacher forcing, the language model f is allowed to generate one next token th, and
a token-level cross-entropy loss is computed between the generated token and the corresponding
ground truth token t∗h. To avoid the trajectory deviating from the ground truth, the model is then fed
the ground truth token at the next step instead of its own generated token. This ensures that the model
and the ground truth have the same input tokens at each step, and the overall cross entropy loss is
defined as

L(f, t∗≤H) = exp

(
− 1

H

H−1∑
h=0

logPf (t
∗
h|t∗<h)

)
(2)

In the same vein, we define a second environment KVM-TF with teacher forcing for PPO training:

1. The reset function is the same as in KVM-Sparse and the environment still maintains the
"actual" token IDs t≤h, and the "managed" token IDs t̂≤h and KV. In addition, we also store
the ground truth token IDs t∗≤H .

2. When stepping the environment, the corresponding a-th element in both t̂≤h and KV are
removed and the language model then generates using the most recently generated token
t[−1] and KV .

3. Different from KVM-Sparse, the next token th is never actually decoded; instead, we
compute the token-level cross-entropy reward rh(∆, t∗h) = − log∆(t∗h). This reward is
strictly negative and larger value indicates better performance. We then concatenate the
ground truth token t∗h to both the actual tokens t and the managed tokens t̂.

Because the environment design is similar to KVM-Sparse, we leave the pseudo-code for KVM-
TF to Appendix. It should be noted, however, that using teacher forcing violates assumptions for
Reinforcement Learning; namely, during inference the policy model will not have access to the
ground truth tokens, yet in the training environment they do. This proved not to be an issue for
language modeling in general, but it is unclear whether this is also the case for KVM.

3.5 PPO Training with Distillation

To simultaneously avoid violating RL assumptions and ensure generalizability, we develop a third
approach named KVM-Distill which generates the ground truth tokens alongside the predicted tokens
when rolling out the policy, effectively distilling from the inferring with the full KV-cache to inferring
with the managed KV-cache. This is structurally similar to the first environment KVM-Sparse, but for
each step we do two model inferences instead of one: once on the managed token ids t̂≤h, once on the
actual token ids t≤h, both with the same language model, and obtain logits ˆDelta and ∆ respectively.
We then make the reward function a similarity measure between the two logits r(s, a) = sim(∆̂,∆),
which can be implemented by a token-level cross entropy loss or KL-divergence, among other
plausible metrics:

r(s, a) =


log ∆̂(argmax

v∈V
∆(v)) (CE)

DKL(D̂||D) =
∑
v∈V

e∆̂(v)∑
v′ e∆̂(v′)

(
∆̂(v)−∆(v)− log

(∑
v′ e∆̂(v′)∑
v′ e∆(v′)

))
(KL)

(3)

5

Similar to the previous subsection, we leave the pseudo-code in the appendix. It should also be noted
that even though KVM-Distill avoids the pitfalls of the other two approaches, it doubles the amount
of model inference, and its reliance on using the same language model for inference on the actual
unabridged tokens means that it is unable to learn to generate more tokens than the language model’s
built-in horizon allows. However, it still provides the benefit of generating with smaller memory
footprint (section 1.1, point 2), and we hypothesize that we could use a larger model for generating
ground truth logits. This can be easily implemented for the Cross-Entropy reward, and also for the
KL-reward provided that the two models share the same tokenizer. Nevertheless, this would further
increase the computational overhead by involving a larger model in the inference loop, so we shall
leave this modification for future work.

4 Results

4.1 Experiment Setup

Since the proposed method is intended to be generic for all language modeling tasks (with optional
task-specific finetuning), the langauge model, dataset and platforms will be selected to reflect common
language modeling use cases. The setup are as follows:

Language model: GPT-2-medium, Llama-3.1-8B-Instruct to explore the effect on models of
different parameter sizes. Larger models will be hard to load into a personal GPU and is hence out of
the scope of this project;

Policy Model: because the policy model needs to be run whenever a token is decode, it must
be lightweight and fast in order to minimize the computation overhead and latency. Because the
state-action space is huge, it is natural to functionally approximate this policy model by a small MLP.
Here we use a 3-layer MLP for both the actor and the critic; the actor MLP has hidden size 128 for
all three layers, and the critic MLP has hidden size 256 for all three layers.

Datasets:

• Wikitext-v2[4]: a generic corpus extracted from Wikipedia. Collecting rollouts of the policy
on this dataset provides a good measure of the general text-generation ability of the language
model under the KV-cache management policy.

• SAMSum[5]: a human-annotated dataset for dialogue summarization tasks. Each entry
consists of a dialogue text consisting of 3-5 turns between 2-3 characters, and a ground-truth
summary of the dialogue. We chose this dataset since its dialogue length is similar to
the cache size we set for KVM, and requires little expert knowledge about sophisticated
backgrounds to summarize, which is ideal considering that we are prioritizing smaller
language models.

We conduct two main classes of experiments:

• General language modeling ability tests. This is done in a similar fashion as the Teacher-
Forcing environment: the policy model manages the KV-cache, and the language model
uses the abridged KV-cache and input tokens to perform inference on the wikitext dataset. A
per-token cross-entropy loss is computed between the output logits and ground-truth token,
and the ground truth token is then appended to the KV-cache and input tokens for the next
generation step. The average token-level cross entropy and perplexity values are recorded.
If the model achieves good scores in this experiment, it means that the model will be able to
perform well in general language modeling tasks.

• Summarization tests. This is done on the SAMSum corpus, and is rolled out in the KVM-
Sparse environment, i.e. the next token decoded from the output logits on the abridged
KV-cache and tokens are appended to the generation results, and the model continues to
generate autoregressively conditioned on the abridged input. The generated summary is
compared with the ground truth summary from the SAMSum corpus using the ROUGE
metric, and we report all four ROUGE metrics for each algorithm.

For each experiment, we roll out the following policies:

6

• KVM-Sparse: This is the policy trained using the KVM-Sparse environment for summariza-
tion specifically.

• KVM-HF: This is the policy trained using the KVM-HF environment with teacher forcing
for general language modeling capabilities.

• KVM-Distill-KL: This is the policy trained using the KVM-Distill environment where the
similarity metric for distillation is KL-Divergence.

• KVM-Distill-PPL: This is the policy trained using the KVM-Distill environment where
the similarity metric for distillation is Cross Entropy Loss, which is essentially related to
Perplexity.

We also include the following baselines for comparison:

• Random: This policy simply randomly chooses an index and releases the KV-Cache there.
• Sliding Window: This policy always releases the oldest element in the KV-Cache.

Hence we have 2 experiment classes, 2 language model choices, and 6 KV-cache management
policies, resulting in 24 different experiment runs.

4.2 Training Process

For the PPO training process, we set the total steps to be 1500000, where each step corresponds
to a generated token; we also do validation and policy optimization every 5000 steps. We set the
ent_coef parameter to 0.01 to allow for better exploration-exploitation trade-off, and we set the
learning rate to 3e− 4. For the KVM-TF policy model, however, due to the huge variance in rewards,
we used a custom learning rate setter which reduces the learning rate with higher rewards shown
below, thus helping the model converge.

lr = 10min{−5,−10−R/100} (4)

We show the reward curves for some of the policy models as they were trained:

4.3 Experiment Results

We report the experiment results for both experiments below:

Table 1: PPL scores on general language modelling

Algorithm Environment Reward Per-token CE Loss Perplexity

GPT-2

Random -853.1944 -6.4669 1666.0275
Sliding Window -957.7592 -8.6928 16142.2238
KVM-HF -416.3925 -4.0582 68.8803
KVM-Distill-KL -597.7086 -6.5830 2750.1760
KVM-Distill-PPL -407.4126 -4.8834 405.6477

It can be seen that all four of our policies upper-bound the two baseline methods by a significant
margin in all experiment settings. In particular, KVM-HF and KVM-Distill outperforms KVM-Sparse
in the summarization test, which shows that these methods actually do succeed in achieving high
generalizability; on the other hand, by sparsifying the reward, it may have become too difficult for
the agent to improve its policy.

7

Figure 1: Training reward of KVM-TF with
GPT2

Figure 2: Training reward of KVM-Distill-PPL
with LLaMA-3.1-8B-Instruct

Figure 3: Training reward of KVM-Distill-KL
with GPT2

Figure 4: Training reward of KVM-TF with
LLaMA-3.1-8B-Instruct

Figure 5: Training reward of KVM-Sparse with
LLaMA-3.1-8B-Instruct

Figure 6: Training reward of KVM-Distill-KL
with LLaMA-3.1-8B-Instruct

Table 2: ROUGE scores on summarization tests

Algorithm Rouge-1 Rouge-2 Rouge-L Rouge-LSum

GPT-2

Random 0.2262 0.0631 0.1681 0.2093
Sliding Window 0.2203 0.0693 0.1744 0.2080
KVM-Sparse 0.2437 0.0840 0.1999 0.2297
KVM-HF 0.2518 0.0927 0.2147 0.2367
KVM-Distill-KL 0.2721 0.0930 0.2077 0.2646
KVM-Distill-PPL 0.2627 0.0988 0.1962 0.2401

LLaMA-3.1-8B-Instruct

random 0.1509 0.0576 0.1252 0.1461
Sliding Window 0.1936 0.0704 0.1545 0.1825
KVM-HF 0.2968 0.1305 0.2240 0.2692
KVM-Distill-KL 0.2308 0.0575 0.1522 0.2093
KVM-Distill-PPL 0.2446 0.0924 0.1791 0.2264
KVM-Sparse 0.2548 0.0910 0.1882 0.2428

References
[1] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam

Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and
Yuxiong He. Deepspeed-fastgen: High-throughput text generation for llms via mii and deepspeed-

8

inference, 2024.

[2] Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge:
Adaptive kv cache merging for llms on long-context tasks, 2024.

[3] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization, 2024.

[4] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[5] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A
human-annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization. Association for Computational Linguistics, 2019.

9

Appendix A

KVM-TF Pseudo-code

Below we present the pseudo-code of the reset and step functions of KVM-TF. Note that the red
highlighted parts indicate important changes from KVM-Sparse.

Algorithm 2: KVM-TF Environment

Class variables:
f(t,KV): The language model as a function of the input IDs and KV-cache
t∗≤H : The ground truth token IDs
t≤h: The sequence of token IDs that the language model has generated
t̂≤h: The sequence of generated token IDs that remain in the KV-cache
KV : The remaining KV-cache
h: The current step
C: The KV-cache size

function reset():
t∗≤H ∼ ρ, t≤C ← t≤H [: C]
KV ← f(t0, ∅)
t̂≤C ← t≤C

h← C

function step(s,a):
KV ← KV [: a] ∪KV [a+ 1 :]
t̂≤h−1 ← t̂≤h−1[: a] ∪ t̂≤h−1[a+ 1 :]
∆,KV ← f(t[−1],KV) # ∆ is the output logits from the language model
rh ← − log∆(t∗h)
t≤h ← t≤h−1∪ t∗h
t̂≤h ← t̂≤h−1∪ t∗h
h← h+ 1
E ← 1(h = H ∨ t = eos_token) # decide whether terminates
return (s(t̂≤h,KV), rh, E)

KVM-Distill Pseudo-code

Below we present the pseudo-code of the reset and step functions of KVM-Sparse. Again, note
that the red highlighted parts indicate important changes from KVM-Sparse.

10

Algorithm 3: KVM-Distill Environment

Class variables:
f(t,KV): The language model as a function of the input IDs and KV-cache
t≤h: The sequence of token IDs that the language model has generated
t̂≤h: The sequence of generated token IDs that remain in the KV-cache
KV : The remaining KV-cache
h: The current step
C: The KV-cache size

function reset():
t0 ∼ ρ
t≤C ,KV ← f(t0, ∅)
t̂≤C ← t≤C

h← C

function step(s,a):
KV ← KV [: a] ∪KV [a+ 1 :]
t̂≤h−1 ← t̂≤h−1[: a] ∪ t̂≤h−1[a+ 1 :]

∆̂,KV ← f(t[−1],KV) # ∆̂ is the output logits from the language model
∆← f(t≤h) # ∆ is the output logits conditioned on the unabridged tokens
rh(s, a)← sim(∆̂,∆) # Implementation of sim can be CE, KL, etc.
th ← argmaxv∈V ∆̂(v) # Greedily decode the next token from the abridged logits
t≤h ← t≤h−1 ∪ th
t̂≤h ← t̂≤h−1 ∪ th
h← h+ 1
E ← 1(h = H ∨ t = eos_token) # decide whether terminates
return (s(t̂≤h,KV), rh(s, a), E)

11

	Introduction
	Background

	Problem
	Problem Formulation
	Hypothesis
	Related class concepts

	Approach
	State Representation
	The PPO Algorithm
	PPO Training with Sparse Reward
	PPO Training with Teacher Forcing
	PPO Training with Distillation

	Results
	Experiment Setup
	Training Process
	Experiment Results

